

INTERNATIONAL RESEARCH JOURNAL OF HUMANITIES AND INTERDISCIPLINARY STUDIES

(Peer-reviewed, Refereed, Indexed & Open Access Journal)

DOI: 03.2021-11278686 ISSN: 2582-8568 IMPACT FACTOR: 5.828 (SJIF 2022)

PROMOTING MASTER OF COMPUTER APPLICATION STUDENTS GAIN ENTREPRENEURIAL SKILLS THROUGH INTERNSHIP TRAINING

S. ESWARAN

Dr. S. SUDHAGAR

Ph. D. Research Scholar,

Assistant Professor,
Department of Commerce,

Department of Commerce,

Department of Commerce,
Thanthai Periyar Govt. Arts and Science College,

Thanthai Periyar Govt. Arts and Science College, Trichy (Tamil Nadu, India)

Trichy (Tamil Nadu, India)

E-mail: eswaranmani1186@gmail.com

E-mail: sudhagar.phd@gmail.com

DOI No. 03.2021-11278686 DOI Link :: https://doi-ds.org/doilink/07.2022-14718996/IRJHIS2207008

Abstract:

The purpose of this study is to investigate the improvement of entrepreneurial skills for students through internship training in Master of Computer Application. The sample respondents of 150 students have been selected under the non-probability convenience sampling method. This study examines the opinions of students of Master of Computer Application students about the improvement of entrepreneurial skills through internship training, the extent of improvement of entrepreneurial skills for students of Master of Computer Application students through internship training, and the relationship between personal factors of students and the extent of improvement of entrepreneurial skills for them through internship training. Weighted average and factor analysis were used to analyse the collected data. Study analyzed the evaluation of an internship training programme that has been conducted among Master of Computer Application students. The research initially set out to offer insights and guidance for the internship programme in several areas, including identifying expectations, promoting the benefits, guiding preparation, and providing a benchmark for future research.

Keywords: Master of Computer Application, Quality of Life, Entrepreneurial Skills.

Introduction:

Industry linkage expresses the relationship between manufacturing and service industries and higher educational institutions. The expectations of industry regarding the right employee for the right job are to be fulfilled by educational institutions. Teaching and training are two sides of the coin of education. The space for teaching is made available in educational institutions. On-the-job training facilities are available in industrial units. Teaching and training must be interlinked. Students should learn theoretical concepts in industrial units. This type of learning environment must be made available to students for the benefit of both students and industrial units. A shortage of skilled

employees is a problem faced by industrial units.

Labour requirements in industrial units are dynamic, whereas academic curriculum taught to students in educational institutions is static. It is a mismatch. It does not meet the labour requirements of industrial units. It makes a good research question. What are the plans needed to make students of higher education institutions employable in industrial units matching employment requirements and entrepreneurs on their own? A research study is needed to answer this question. It is presumed that industrial linkage will create employment competencies and entrepreneurial competencies for students of higher educational institutions. Land, labour, capital, and organisation are the four factors of production. It is the responsibility of higher education to teach, train, and practise the students to acquire the four factors of production for the developing industries of a country. Industrial development contributes to employment development.

Objectives:

> To analyse the extent of improvement of entrepreneurial skills for students of Master of Computer Application through internship training.

Methodology:

It is a descriptive and analytical study. This research study is based on both primary and secondary data. The required secondary data is collected from books, journals, magazines, published reports, business newspapers, and websites related to entrepreneurship and skill development. Primary data is collected from the respondents through a questionnaire. The questionnaire is duty pretested with the help of expected entrepreneurship and internship training and selected respondents. A pre-test questionnaire is used for collecting primary data. Convenience sampling methods are used to identify sample respondents. 150. Students are chosen to collect primary data. students pursuing a master's degree in computer applications. A pilot study was conducted to judge the reliability and validity of the data to achieve the objective of the study. A pilot study determined that the collected data is appropriate for this study, and analysis will be carried out accordingly to test hypotheses and achieve the study's objective.

Hypothesis:

H0: There is no association between gender, residential area & course specialization, and entrepreneur skills towards the students have in the internship training in enhancing their opportunities for entrepreneur system.

Findings and Discussion:

Table 1- Descriptive Statistics of Respondents

Sr. No.	Explanatory Variables	Coding	Frequency	%
1	Gender	Male	93	62
		Female	57	38

2	Age	20-23	67	44.7
		24-26	35	23.3
		27-30	31	20.7
		Above 30	17	11.3
3	Residential Area	Urban	127	84.7
		Rural	23	15.3
4	Institution Type	Private	73	48.7
		Government Aided	54	36
		Government	23	15.3
5	Specialization of Course	Web Designer &	61	40.6
		Developer		
	of of H	Hardware	38	25.4
	sournal of H	Data Scientist	30	20
	100	Software Consultant	21	14

Source: Primary Data

Table 1, represents the descriptive statistics of demographic variables such as gender, age, residential area, institution type, and specialization of respondents. 62% of the respondents are male, and the remaining 38% of the respondents are female. Hence, a majority of 62% of respondents are male. 44.7% of them belong to the below 20–23 year age group, 23.3% belong to the 24-26 year age group of respondents, 20.7% belong to the 27–30 year age group of respondents, and another 11.3% belong to the age group of above 30 years. Hence, a majority of the respondents belong to the 20-23 year age group. 54% of the respondents fall under the residential area category of urban, and 46% under the category of rural residential area. Thus, a majority of the respondents' residential areas are in the urban category. 48.7% of the respondents fall under the institution type of private, 36% under the category of government aided, and 15.3% under the category of government. Thus, a majority of the respondents fall into private institutions. Majority 40.6% of the respondents related to Web Designer & Developer through the specialization, followed by 25.4% under the category of Hardware and 20% under the category of Data Scientist. It is inferred that most of the respondents are related to web designers and developers.

Table 2- Internship Training Improvement Index

Sr.No.	Internship Training Improves	SA	A	N	DA	SD	Total	Mean
							Weight	Score
							Score	
1	Communication Skill	82	36	22	9	1	639	4.26

2	Team Work	33	77	29	9	2	580	3.86
3	Analytic & problem Solving skill	21	67	43	12	7	533	3.55
4	Personal Management skill	29	59	42	9	11	536	3.57
5	Interpersonal skill	25	40	62	16	7	510	3.4
6	Computer literacy	30	43	50	21	6	520	3.46
7	Leadership skill	29	37	44	31	9	496	3.3
8	Learning skill	32	49	38	24	7	525	3.5
9	Ethics and work values	21	42	51	23	13	485	3.23
10	Accounting Skill	32	45	35	24	14	507	3.38
11	Administrative Skill	30	45	41	22	12	509	3.39
12	Organization Skill	26	46	46	21	11	551	3.67
13	Self – Motivation	25	40	40	32	13	522	3.48
14	Self – Confidence	28	47	40	25	10	508	3.38
15	Creativity	25	42	43	26	14	488	3.25
16	Innovation Skill	29	39	38	35	9	495	3.29
17	Presentation Skill	17	47	49	27	10	484	3.22
18	Decision Making Skill	25	42	40	18	16	483	3.22
19	Flexibility Skill	22	46	39	31	12	485	3.23
20	Research Skill	33	46	40	13	18	513	3.42

Weighted score = Weight*No. of Respondents. Weighted average rank: Total / sum of weight **Factor Analysis:**

The KMO (Kaiser-Meyer-Olkin) measure of sampling has been computed to conclude the suitability of using factor analysis. The values between 0.5 and 1.0 indicate that factor analysis is suitable or appropriate. The KMO test is presented in Table 2. Table 2 indicates that the calculated value of KMO is .875, which shows that the sample is adequate to conduct exploratory factor analysis. Bartlett's Test of Sphericity also shows the significance of factor analysis on the data. The scale has also been tested for reliability, and the value of Cronbach's Alpha is .859. Table 4.53 (Hair et al. 2010) shows that variables with a loading greater than 0.45 are practically significant and support acceptable levels of explanation. Hence, criteria of 0.45 have been considered for selecting the variables.

Table 3- KMO, Bartlett's test, and Reliability Statistics

Kaiser – Mayer – Olkin	Measure of Sampling	0.875	Reliability Statistics			
Adequacy						
	Approx. Chi – Square	6172.16	Cronbach's Alpha	No. of Items		
Bartlett's Test of Sphericity	df	703	0.859	20		
	Sig.	.000				

Table 4- Total Variance Explained

Component	Initial E	Cigen values		Extract Loading		of Squared	Rotation Sums Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	15.896	49.675	49.675	15.896	49.675	49.675	5.635	17.611	17.611
2	1.509	4.715	54.391	1.509	4.715	54.391	5.217	16.305	33.915
3	1.263	3.946	58.337	1.263	3.946	58.337	4.795	14.983	48.898
4	1.161	3.627	61.964	1.161	3.627	61.964	4.181	13.065	61.964

Source: Computed from Primary Data

From Table 4, it shows that indicates that the extracted communalities are highly acceptable for all the variables. It can be seen that exploratory factor analysis revealed six underlying dimensions for online shopping. These four factors explain 49.675% of the total variance. Based on the rotated component matrix, the statements are categorized under respective factors as shown in table 4. Eigen values for Factors 1, 2, 3, and 4 are 15.896, 1.509, 1.263, and 1.161, respectively.

Table 5- Rotated Component Matrix

The Rotated Component Matrix helps to determine what the component represents. It contains estimates of the correlations between each of the variables and the estimated components. The rotated components matrix the researcher has classified into four categories which are based upon the highest value (>0.60) drawn from the rotated components matrix analysis.

Variables	Component					Eigen value	Variance	Cronbach's Alpha
	1	2	3	4	5			
Communication Skill	.812							
Team Work	.804							
Analytic & problem Solving skill	.726					6.739	17.733	.855

Personal Management	.667							
skill								
Interpersonal skill	.665							
Computer literacy	.626							
Leadership skill		.883						
Learning skill		.849						
Ethics and work values		.808				4.716	12.412	.893
Accounting Skill		.805						
Administrative Skill		.781						
Organization Skill			.639					
Self – Motivation			.830			3.575	9.407	.650
Self – Confidence		to	.816	mai	litie			
Creativity	1115		.794			and		
Innovation Skill		1	.745	- 3		·Q		
Presentation Skill		Z.F	4.50	.841			36	
Decision Making Skill		à		.813	N	3.241	3.241	.814
Flexibility Skill			3	.649	64	1	136	
Research Skill		15		.616	24	N. N	5	

Source: Primary Data.

Conclusion:

The researcher investigated the significance of internship training to Master of Computer Application students in this study. An extensive analysis has been done to study the improvement of entrepreneurial skills through internship training. It is found that internship training is a felt need for students of entrepreneurial skills in Master of Computer Application students as it provides entrepreneurial skills and employment opportunities to them. It is found that the acceptance index for the following entrepreneurial skills developed through the internship is high. reveals that internship training gives students confidence regarding their career development in the future.

References:

- 1. Galeano, N., Morales-Menendez, R., & Cantú, F. J. (2012). Developing research skills in undergraduate students through an internship program in research and innovation. International Journal of Engineering Education, 28(1), 48.
- 2. VIJAYALAKSHMI, R., & GURUMOORTHY, T. PROMOTING ENTREPRENEURSHIP ON INTERNSHIP TRAINING FOR ELECTRICAL AND ELECTRONIC ENGINEERING IN KARAIKUDI.

- 3. Ornellas, A., Falkner, K., & Stålbrandt, E. E. (2018). Enhancing graduates' employability skills through authentic learning approaches. Higher education, skills and work-based learning.
- 4. Anjum, S. (2020). Impact of internship programs on professional and personal development of business students: a case study from Pakistan. Future Business Journal, 6(1), 1-13.
- 5. Erzinkyan, E. A. (2019). Entrepreneurial skills development through distance learning. Journal of Entrepreneurship Education, 22, 1-12.
- 6. Schlee, R. P., & Karns, G. L. (2017). Job requirements for marketing graduates: Are there differences in the knowledge, skills, and personal attributes needed for different salary levels?. Journal of Marketing Education, 39(2), 69-81.

